Some observations regarding Isometric Paths[image: image1.emf]0 50 100 150 200 250

0

100000

200000

300000

400000

500000

Chart 1 - Path length distribution

Unique paths All Isomers Rotational Isomers

Length in Basic Blocks


[image: image2.emf]50 55 60 65 70 75 80

300000

320000

340000

360000

380000

400000

420000

440000

460000

480000

Chart 2 - Path length distribution

Unique paths

Length in Basic Blocks

[image: image3.emf]Row 1 Row 2 Row 3 Row 4

0

2

4

6

8

10

12

Column 1

Column 2

Column 3

0 50 100 150 200 250

0

10000

20000

30000

40000

50000

Chart 3 - Path length distribution

Isomers

All Isomers Rotational Isomers

Length in Basic Blocks

Abstract—In a dynamic path profiling system, multiple isomers of any given path or higher-level strata (cycles of paths) may occur. Analysis of the differences between various isometric paths (and their associated dynamic execution counts) may provide additional insights into better feedback-driven and/or dynamic optimization techniques. Some statistics about various types of isomers are presented.

I. INTRODUCTION

I

n a Dynamic Whole Program [path] Profiling system[1], multiple isomers of any given path may be occur and be discovered. In chemistry, isomers of a substance are comprised of the same elements, but differ in arrangement. This concept has validity when transferred into the domain of dynamic path-based profiling, as cyclical paths ABCD, DBAC, DABC, etc. may all be collected. Conceptually, there are at least two interesting sub-types of isometric paths: rotational, and palindrome. Other relevant sub-types probably exist. A rotational path is typified by a loop where the entrance into the loop path is not at the head of the loop. That is, for a base path of ABCD, rotational isometric paths are: BCDA, CDAB, and DABC. A palindromic path isomer is one in which the order of the sequence is a reversal of the original: the palindrome of path ABC is path CBA. Feedback-directed and dynamic optimization systems can benefit from the information about both rotational and palindromic path isomers to drive performance improvements. Investigations into short paths which are subsets of longer paths have not been done, but might be of interest.

II. DWPP Terminology

The terminology from DWPP[1] is again presented here as a matter of reference:

Bb – Basic Block

Path – a cycle of Bbs which are tracked by their starting addresses. For example, if the Bb starting addresses are “AABAABAAB”, this breaks down into the following paths: Path0 is A; Path1 is BA; Path2 is AB; Path3 is B. This evaluates to (A2)(BA)(AB)(A2)(B), while the optimal representation of the example paths evaluates to (A2B)3.

Repeated Path (RP) – consecutive executions of a Path. In the above example, Path0 has an initial count of 2, which is written as Path02.

Stratum Element – a cycle of repeated paths. For example, if the sequence of repeated paths is “P07, P112, P05, P112”, the Strata are S0 = P07,P112,P05, and S1 = P112.

Repeated Stratum Element – consecutive executions of a Stratum Element. If Stratum Element S0 was executed 94 times, this would be written as S094.

Stratum Layer – A cycle of Repeated Stratum Elements. Stratum LayerN is comprised of Stratum Elements from Stratum LayerN-1. For the initial case of Stratum Layer0, the elements are repeated paths.

DWPP – Dynamic Whole Program Profile

III. Implementation Environment

Utilizing the output data from DWPP, follow-on tools were written to analyze the Path and Stratum Element database files to search for isometric paths and strata. The system used to capture the complete instruction traces of SPEC CPU2006 had the following characteristics: x86_64 Linux® (Fedora 7), gcc 4.1.2; 8GB memory, 160 GB of disk; 2.6Ghz dual core processor. The binary instrumentation toolkit used was PIN [3] version 2.2-15113. The SPEC CPU2006 benchmarks were compiled at an optimization level of –O2, and run in “base” mode. A simple database to store content, and libz was used to provide a final level of general compression of content in some of the data files. The source code for the DWPP tool and is available via http://www.gorton-machine.org/rick/, along with a subset of the logs and raw data files.

IV. The Data

A. Overview

The data is first presented on a static basis, without dynamic frequencies, followed by the data with attention paid to the dynamic frequencies of the isometric paths. Next, some comparisons between rotational path isomers and all isomers are presented, followed by details of some of the palindrome isomers.

B. Static Path Length distributions

While isomers of paths with a length of one are meaningless, some statistics about paths of length one will be presented for comparison. Isometric paths of lengths two are always both rotational and palindromic, so little attention will be given to them. In total, the number of unique paths was is shown here in Table 1 – the paths had lengths (in Basic Blocks) ranging from 1 to 208.

Table 1

	Path Length
	Unique Paths
	Dynamic count totals
	All Isomers
	Dynamic count isomers
	Rotational Isomers
	Dynamic count Rotational Isomers
	Palindrome Isomers
	Dynamic count palindromes

	1
	11024
	1.23e+12

	0
	0
	0
	0
	0
	0

	2
	16100
	5.24e+11
	2635
	2.88E+011
	2635
	2.88e+11

	2635
	2.88E+011

	3
	16704
	1.09e+11

	3186
	3.71E+010
	2948
	3.63E+011
	238
	8.88E+008

	4
	15859
	1.13E+011
	3776
	2.65E+010
	3044
	2.64E+011
	0
	0

	5
	19019
	1.26e+11
	3776
	3.48E+010
	3392
	3.47E+011
	0
	0

	…
	…
	…
	…
	...
	…
	...
	...
	...

	All
	2.47E+007
	2.32E+012
	1423426
	4.79E+011
	885575
	4.75E+011
	2873
	2.89E+011

Due to the quantity of data, a more comprehensible representation of the path length distribution is shown as Chart 1. The presence of a peak and subsequent plateau at approximately length 60-75 Bbs is interesting, and expanded in Chart 2.

While a more regular curve would seem to be expected, the number of application/dataset combinations is neither particularly large, and it is from a set of compute-limited, single-threaded benchmarks.

[image: image4.emf]20 22 24 26 28 30 32 34 36 38 40

0

10000

20000

30000

40000

50000

Chart 4 - Path length distribution

Isomers (zoom in)

All Isomers Rotational Isomers

Length in Basic Blocks

Chart 3 is the same data, but limited to the isometric paths.[image: image5.emf]0 50 100 150 200 250

1.00E+000

1.00E+002

1.00E+004

1.00E+006

1.00E+008

1.00E+010

1.00E+012

1.00E+014

Chart 5 - Dynamic path frequency

(Semi-Log)

Dyn. Path count Dyn. Isomer Freq Rot. Isomer Freq Palindromic Isomer Freq

Path Length (Basic Blocks)

[image: image6.emf]0 10 20 30 40 50 60 70 80 90 100

1.00E+007

1.00E+008

1.00E+009

1.00E+010

1.00E+011

1.00E+012

1.00E+013

Chart 6 - Dynamic path frequency

(Semi-Log, bounded)

Dyn. Path count Dyn. Isomer Freq

Rot. Isomer Freq Palindromic Isomer Freq

Path Length (Basic Blocks)

The rotational isomers do comprise the vast majority of all isomers, with a couple of notable aberrations. From lengths 25 through 33, there is an interesting divergence. During this interval, the number of rotational isomers of all of the unique isomers remains roughly even, but the number of all isomers spikes to almost 4 times the number of rotational isomers. An expanded plot is shown as Chart 4.

[image: image7.emf]0 50 100 150 200 250

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Chart 7 - Static and Dynamic percentages

Rotational Isomers vs. All Isomers

Static Rotational % Dyn. Rotational %

Path Length (Basic Blocks)

At present, an explanation (let alone a generalized theory) of the cause for this divergence escapes the author.

C. Path Lengths and dynamic execution frequency distributions

As we can see in Chart 5, the dynamic frequencies of the various paths by length are intuitively reasonable for most of the data. A slightly descending curve early on, quickly becoming linear, with fragmentation and less predictable behavior once the path length hits about 150 basic blocks in length. The frequencies of the isomers roughly parallel the total frequency distribution, but with a faster decrease (decay?) in the dynamic count than that of all paths.

[image: image8.emf]0 10 20 30 40 50 60 70 80 90 100

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Chart 8 - Rotational Isomers vs. All Isomers

Static Rotational % Dyn. Rotational %

Path Length (Basic Blocks)

Another view of the same data (Chart 6) is bounded to a minimum frequency of 1E7; while the total dynamically executed paths do not drop below this level until just after length 100 Bbs, the isomers can be generalized as dropping below this value at approximately 50 Bbs. From this chart, it appears that the vast majority of isomers are rotational. The choice of 1E7 is rather arbitrary, on the assumption that a dynamic execution count of less than that can be assumed to be generally negligible in the larger scheme of things.

D. Comparison of Rotational Path Isomers against a backdrop of all Path Isomers

From casually observing the data in section B (Static path length distributions) and section C (Path Lengths and dynamic execution frequency distributions) it would appear to be the case that the static and dynamic (frequency) percentages of rotational path isomers when compared to all path isomers are roughly parallel, and nominally equivalent. However, when graphed, some unusual behavior appears. In Chart 7, if a count was zero, it was given a value of -100%. Two specific overall data are not presented in this graph: the total static and dynamic frequency percentages. The overall static percentage of rotational isomers vs. all isomers is a mere 62.2%, but the dynamic execution frequency percentage of all rotational isomers vs. all isomers is a surprising 99.2%. Chart 8 presents the same data for Chart 7, but bounded in two ways: a maximum path length of 100 (to generally match the bounds of Chart 6), and secondly, Y-axis values of less than zero were ignored.

Some interesting facets of the data in Chart 8: the gross divergence between static and dynamic counts of rotational path isomers at around a length of 30 Basic Blocks; the abrupt drop-off at a path length of 60 of the static proportion of rotational isomers vs. all isomers; the peak of the dynamic (execution frequency) proportion of rotational isomers vs. all isomers coming at a length of 90 Basic Blocks.

E. Characteristics of Palindrome Isomers

As all isomers of length two are both rotational and palindromic, the only isomers of interest as palindromic isomers are for path lengths greater than two. These are relatively rare (in static terms), and only have only been found to occur at a path length of 3 Basic Blocks. Conceptually, it would seem to be possible to have longer palindrome isomers in some sort of state machine (perhaps an interpreter). When a pair of completely arbitrarily chosen palindrome isomers are disassembled, this appears to not be the case. The paths are path Ids 598, and 724 from sjeng, which is one of the more complex (in terms of dwpp strata). Here are the disassembled paths – path 598 has a dynamic execution frequency of 162E6, while path 724 has an execution frequency of 293E6. That is, neither is trivial in the overall scheme of things.

========== Path ID 598 Disassembly ==========

==== Bb Address: 0x40df2d ====

0x40df2d
6 Instructions
Routine: [remove_one]

mov dword ptr [rdi], eax

mov r8d, dword ptr [rcx]

add eax, 0x1

add rcx, 0x4

cmp edx, eax

jnle 0x40df28

==== Bb Address: 0x40df28 ====

0x40df28
2 Instructions
Routine: [remove_one]

cmp dword ptr [rcx], r8d

jle 0x40df32

==== Bb Address: 0x40df32 ====

0x40df32
4 Instructions
Routine: [remove_one]

add eax, 0x1

add rcx, 0x4

cmp edx, eax

jnle 0x40df28

========== Path ID 724 Disassembly ==========

==== Bb Address: 0x40df32 ====

0x40df32
4 Instructions
Routine: [remove_one]

add eax, 0x1

add rcx, 0x4

cmp edx, eax

jnle 0x40df28

==== Bb Address: 0x40df28 ====

0x40df28
2 Instructions
Routine: [remove_one]

cmp dword ptr [rcx], r8d

jle 0x40df32

==== Bb Address: 0x40df2d ====

0x40df2d
6 Instructions
Routine: [remove_one]

mov dword ptr [rdi], eax

mov r8d, dword ptr [rcx]

add eax, 0x1

add rcx, 0x4

cmp edx, eax

jnle 0x40df28

V. Implications

Significant efforts have been put into compilation techniques to expand the scope and reach of the context which is evaluated in order to produce “better” code. The definition of “better” largely depends upon the goals of the compiler and architecture, but frequently come down to maximizing execution-time performance. As an aside, given the level of attention given to power consumption in the computing field at present, it is probable that significant effort will be put into extending “better” to mean reduced power consumption[11]. The bulk of the work has been focused on enhancement of the static (compile-time) performance, but can include pushing optimization into all phases of an application. Improved algorithms, taking advantage of potential parallelism via multiple execution threads, or whole-scale use of data parallel language APIs such as OpenCL are means to improve performance at the source level. Enhanced levels compilation optimizations include expanding the scope and range of the contextual analysis to Super-blocks [5], Hyper-blocks [6], through Region-based compilation [7]. Link time optimizations[8,9] can be applied to take advantage of various architecturally specific features. Feedback-directed optimization[10] is useful when the training dataset is truly representative of all input data sets. The logical extensions of these approaches include load-time optimizations to take advantage of architectural features (load key libraries highly tuned to the micro-architecture of the cpu/gpu[13]), and dynamic binary optimization[4] at various levels, from user space resident optimizers to having optimizers resident in the hardware[12]. In terms of expanding the scope and reach of the context which is evaluated, value specialization and partial evaluation can be exposed via path-based optimization, as demonstrated by [14].

The benefits of path-based feedback-directed compilation or dynamic binary optimization would seem to be obvious, but certainly challenging to implement, especially given the requisite overhead entailed.

VI. Conclusions & Future Directions

The benefits of path-based feedback-directed compilation or dynamic binary optimization would seem to be obvious, but certainly challenging to implement, given the requisite overhead entailed. For example, how should one describe a potential value specialization in some sort of feedback file for a compiler to take advantage of? Another potential area of investigation would include looking at congruent isometric paths, wherein the instruction sequences of path A are exactly the same as those in path B, merely replicated in a completely different location (perhaps even a separate library). If these are commonplace, there would seem to be an opportunity to reduce the code-size footprint of applications, and extract benefits from better icache behavior.

VII. References

[1] Richard Gorton, Dynamic Whole Program Profiling. Submitted to IISWC, 2009. http://gorton-machine.org/rick/professional/dwpp.pdf and http://developer.amd.com/documentation/articles/assets/gorton_profiling.pdf

[2] SPEC CPU2006 web site: http://www.spec.org/cpu2006
[3] PIN web site: http://www.pintool.org. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, Kim Hazelwood. "Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation," Programming Language Design and Implementation (PLDI), Chicago, IL, June 2005, pp. 190-200. The data were initially collected with kit version 2.2-15113.

[4] AMD's DynOpt project: fall 2006-spring 2010 (canceled April, 2010) – a dynamic binary optimization system utilizing hardware performance counters to drive super-region construction and optimization. Described in A Dynamic Binary Optimization Framework for the Multicore Era. Mike Bedy, Mark Herdeg, Alex Shye, Tony Tye (2009) submitted to PLDI 2010, unpublished. Work done at AMD (www.amd.com)

[5] Software Pipelining and Superblock Scheduling: Compilation Techniques for VLIWMachines. Meng Lee, Partha Tirumalai, Tin-Fook Ngai. HP Computer Systems Laboratory: HPL-92-78. June, 1992. http://www.hpl.hp.com/techreports/92/HPL-92-78.pdf
[6] Effective compiler support for predicated execution using the hyperblock. Scott A. Mahlke David C. Lin William Y. Chen Richard E. Hank Roger A. Bringmann MICRO 25 Proceedings of the 25th annual international symposium on Microarchitecture IEEE Computer Society Press Los Alamitos, CA, USA ©1992

[7] Region-Based Compilation: An Introduction and Motivation. Hank, R. E., Hwu, W. W., and Rau, B. R. (1995). Region-based compilation: an introduction and motivation. Proceedings of the 28th Annual International Symposium on Microarchitecture, pages 158-168, Michigan.

[8] Link-Time Optimization of Address Calculation on a 64-bit Architecture, Amitabh Srivastava and David W. Wall (1994) Technical report: ftp://ftp.digital.com/pub/Digital/WRL/research-rep, http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-9, PLDI, 1994

[9] Spike: An Optimizer for Alpha/NT Executables. Robert Cohn, David Goodwin, P. Geoffrey Lowney, and Norman Rubin. USENIX Windows NT Workshop, Seattle, 1997

[10] Overcoming the Challenges to Feedback-Directed Optimization. Michael D. Smith, Harvard University. ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation andOptimization (Dynamo’00), Boston, January 18, 2000.

[11] Developing Energy-Aware Strategies for the Blackfin Processor. VanderSanden, Kaeli, Olivadoti,Gentile. High Performance Embedded Computing (HPEC) Workshops, 28-30 September 2004.

[12] The Transmeta Code Morphing Software:Using Speculation, Recovery, and Adaptive Retranslation to Address Real-Life Challenges , The Transmeta Code Morphing Software: Using Speculation, Recovery, and Adaptive Retranslation to Address Real-Life Challenges, IEEE/ACM International Symposium on Code Generation and Optimization (CGO), March 2003

[13] Solaris ships multiple versions of libc_psr.so with every version of the OS; load-time mechanisms resolve to the version which corresponds to that for the current system. Performance-critical routines are contained in libc_psr.so, including things like memcpy(), memcmp, memmove, and some micro-architecture specific routines, such as div64, mul64, rem64.

[14] http://www.hotchips.org/archives/hc11/3_Tue/hc99.s6.2.Deaver.pdf Wiggins/Redstone: An On-line Program Specializer. Dean Deaver, Richard Gorton, Norm Rubin. Hot Chips 11, Aug. 1999.

Richard Gorton – rcgorton@verizon.net

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

	This work was performed independently, without being sanctioned, endorsed, or funded by any entity. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright, 2011, Richard Gorton, all rights reserved.

_193067744.unknown

_244078208.unknown

_254170756.unknown

_254171524.unknown

_254169988.unknown

_254170372.unknown

_244076672.unknown

_244077056.unknown

